Interactions between cell wall polysaccharides and polyphenols.

a School of Chemical Sciences , University of Auckland , Auckland , New Zealand.

Critical reviews in food science and nutrition. 2018;(11):1808-1831
Full text from:

Abstract

In plant-based food systems such as fruits, vegetables, and cereals, cell wall polysaccharides and polyphenols co-exist and commonly interact during processing and digestion. The noncovalent interactions between cell wall polysaccharides and polyphenols may greatly influence the physicochemical and nutritional properties of foods. The affinity of cell wall polysaccharides with polyphenols depends on both endogenous and exogenous factors. The endogenous factors include the structures, compositions, and concentrations of both polysaccharides and polyphenols, and the exogenous factors are the environmental conditions such as pH, temperature, ionic strength, and the presence of other components (e.g., protein). Diverse methods used to directly characterize the interactions include NMR spectroscopy, size-exclusion chromatography, confocal microscopy, isothermal titration calorimetry, molecular dynamics simulation, and so on. The un-bound polyphenols are quantified by liquid chromatography or spectrophotometry after dialysis or centrifugation. The adsorption of polyphenols by polysaccharides is mostly driven by hydrophobic interactions and hydrogen bonding, and can be described by various isothermal models such as Langmuir and Freundlich equations. Quality attributes of various food and beverage products (e.g., wine) can be significantly affected by polysaccharide-polyphenol interactions. Nutritionally, the interactions play an important role in the digestive tract of humans for the metabolism of both polyphenols and polysaccharides.

Methodological quality

Publication Type : Review

Metadata